IG-NANA

The best of GOI / COP free / Gettering
Process Flow of IG-NANA Wafer

1. Crystal Growth
 - Nitrogen doped Si Crystal
 - Si Melt
2. Wafering
3. High Temp. Annealing (Surface Improvement)
4. IG-NANA Wafer

Steps:
- Slicing
- Polishing
- Argon Annealing
- Polished Wafer
IG-NANA Wafer
High performance and Cost-effective Wafer.
The best starting material for variety of device process including Low Thermal Budget.

Summary

Surface:Defect Free

Bulk:Gettering Effect

Silicon Wafer

Cross-sectional View

<table>
<thead>
<tr>
<th></th>
<th>IG-NANA</th>
<th>Thin Epi</th>
<th>CZ/RTA</th>
<th>HAW</th>
<th>Pure</th>
<th>CZPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Defect & COP</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
<td>Fair</td>
</tr>
<tr>
<td>Gettering Performance</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
</tr>
</tbody>
</table>

150～200mm wafer : Mass production
300mm wafer : Under development and sample-scale production

Perfect Denuded Zone

CZ PW
133 defects/cm²

IG-NANA
0.30 defects/cm²

Measured by LSTD scanner, detecting 0~5μm near surface larger than 50nm
High Performance for Junction Leakage

Correlation between the number of high leakage cell and LSTD density
(Source: H. Kubota et al., E.C.S. Proceedings Vol. 2000 -17)

Deeper COP free zone

Deeper high TDDB zone

after Low Thermal Budget process measured by Shin Etsu STD method

IG-NANA Low Cl | IG-NANA High Cl | CZ/RTA
IG-NANA Mid Cl | Low Defect CZ | HAW
What is NANA?

NANA means "7" in Japanese. This is the atomic number of Nitrogen. The NANA is symbolic of nitrogen doping technology.

- NANA technology is the solution for achieving
 1. The higher gettering performance by BMD
 2. The perfect Denuded Zone for device region

- Shin-Etsu Handotai (SEH) provides two types of NANA wafers, **IG-NANA / EP-NANA**

 to satisfy all requirements in sub-0.25μm device generation and beyond.

Development History

Gettering Problems

1977 Invention of Intrinsic Gettering (IG)
1983 ~ Development of DZ-IG wafer
1993 ~ Gettering trouble due to lowered Oxygen
1994 ~ Increasing need for P/P- Epi wafer to avoid COP
1995 ~ Problem due to poor gettering ability of P/P- Epi

2000 ~ SEH IG-NANA for ultimate solution

1997 Evidence of residual COPs on hydrogen annealed wafer
1991 ~ Development of hydrogen annealed wafer to avoid COP
1991 Device failure due to COPs with shrinking design rule
1990 Discovery of COPs as a grown-in defect
1983 ~ GOI problem due to Grown-in Defects

COPs Problems
Precaution

All data presented in this catalog may not be relied upon to represent standard values. Shin-Etsu Handotai reserves the right to change information in this catalog, including product performance standards and specifications, without notice.

•

Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use. Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.

•

IG-NANA and EP-NANA are trademark pending.

•

Copyright belongs to Corporate Planning Department of Shin-Etsu Handotai Co., LTD.